Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1345499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469293

RESUMO

Immune responses to both SARS-CoV-2 infection and its associated vaccines have been highly variable within the general population. The increasing evidence of long-lasting symptoms after resolution of infection, called post-acute sequelae of COVID-19 (PASC) or "Long COVID," suggests that immune-mediated mechanisms are at play. Closely related endemic common human coronaviruses (hCoV) can induce pre-existing and potentially cross-reactive immunity, which can then affect primary SARS-CoV-2 infection, as well as vaccination responses. The influence of pre-existing immunity from these hCoVs, as well as responses generated from original CoV2 strains or vaccines on the development of new high-affinity responses to CoV2 antigenic viral variants, needs to be better understood given the need for continuous vaccine adaptation and application in the population. Due in part to thymic involution, normal aging is associated with reduced naïve T cell compartments and impaired primary antigen responsiveness, resulting in a reliance on the pre-existing cross-reactive memory cell pool which may be of lower affinity, restricted in diversity, or of shorter duration. These effects can also be mediated by the presence of down-regulatory anti-idiotype responses which also increase in aging. Given the tremendous heterogeneity of clinical data, utilization of preclinical models offers the greatest ability to assess immune responses under a controlled setting. These models should now involve prior antigen/viral exposure combined with incorporation of modifying factors such as age on immune responses and effects. This will also allow for mechanistic dissection and understanding of the different immune pathways involved in both SARS-CoV-2 pathogen and potential vaccine responses over time and how pre-existing memory responses, including potential anti-idiotype responses, can affect efficacy as well as potential off-target effects in different tissues as well as modeling PASC.


Assuntos
COVID-19 , Vacinas , Humanos , Síndrome Pós-COVID-19 Aguda , SARS-CoV-2 , Envelhecimento , Idiótipos de Imunoglobulinas
4.
Front Immunol ; 13: 1012016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776393

RESUMO

Introduction: The incidence of obesity, a condition characterized by systemic chronic inflammation, has reached pandemic proportions and is a poor prognostic factor in many pathologic states. However, its role on immune parameters has been diverse and at times contradictory. We have previously demonstrated that obesity can result in what has been called the "obesity paradox" which results in increased T cell exhaustion, but also greater efficacy of immune checkpoint blockade in cancer treatment. Methods: The role of obesity, particularly in the context of aging, has not been robustly explored using preclinical models. We therefore evaluated how age impacts the immune environment on T cell development and function using diet-induced obese (DIO) mice. Results: We observed that DIO mice initially displayed greater thymopoiesis but then developed greater thymic involution over time compared to their lean counterparts. Both aging and obesity resulted in increased T cell memory conversion combined with increased expression of T cell exhaustion markers and Treg expansion. This increased T cell immunosuppression with age then resulted in a loss of anti-tumor efficacy by immune checkpoint inhibitors (ICIs) in older DIO mice compared to the younger DIO counterparts. Discussion: These results suggest that both aging and obesity contribute to T cell dysfunction resulting in increased thymic involution. This combined with increased T cell exhaustion and immunosuppressive parameters affects immunotherapy efficacy reducing the advantage of obesity in cancer immunotherapy responses.


Assuntos
Exaustão das Células T , Timo , Camundongos , Animais , Envelhecimento , Obesidade , Diferenciação Celular , Camundongos Obesos
5.
Blood Adv ; 5(20): 4219-4232, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34496010

RESUMO

Natural killer (NK) cells are involved in innate defense against viral infection and cancer. NK cells can be divided into subsets based on the ability of different receptors to bind to major histocompatibility (MHC) class 1 molecules, resulting in differential responses upon activation in a process called "licensing" or "arming." NK cells expressing receptors that bind self-MHC are considered licensed due to an augmented effector lytic function capability compared with unlicensed subsets. However, we demonstrated that unlicensed NK subsets instead positively regulate the adaptive T-cell response during viral infections that are related to localization and cytokine production. In this study, the differential effects of the two types of NK subsets were contingent on the environment in viral infection and hematopoietic stem cell transplantation (HSCT) models. Infection of mice with high-dose (HD) murine cytomegalovirus (MCMC) led to a loss of licensing-associated differences, as compared with mice with low-dose (LD) infection: the unlicensed NK subset no longer localized in lymph nodes (LNs), but instead remained at the site of infection. Similarly, the patterns observed during HD infection paralleled the phenotypes of both human and mouse NK cells in an HSCT setting where NK cells exhibit an activated phenotype. However, in contrast to the effects of subset depletion in T-cell replete models, the licensed NK cell subsets still dominated antiviral responses after HSCT. Overall, our results highlight the intricate tuning of NK cells and how it affects overall immune responses with regard to licensing patterns and their dependency on the level of stimulation and activation status.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Muromegalovirus , Animais , Humanos , Células Matadoras Naturais , Camundongos , Camundongos Endogâmicos C57BL
6.
Blood ; 138(24): 2583-2588, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34424962

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a potential curative option for treating a variety of hematologic diseases, but acute and chronic graft-versus-host disease (GVHD) remain major barriers limiting efficacy. Acute gut GVHD occurs with marked increases in proinflammatory cytokines (including TNF and IL-6), which we recently demonstrated was exacerbated in obesity resulting in severe gastrointestinal pathology. Given the pleiotropic and overlapping effects of these 2 cytokines, we assessed the impact of dual TNF and IL-6R blockade on GVHD as well as graft-versus tumor (GVT) effects in different mouse GVHD models. Early administration of combined blockade resulted in greater protection and survival from acute gut GVHD compared with single blockade regimens and even development of later chronic skin GVHD. Importantly, double cytokine blockade preserved GVT effects reinforcing that GVT and GVHD can be delineated and may result in greater efficacy in allo-HSCT.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas , Receptores de Interleucina-6/antagonistas & inibidores , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Animais , Anticorpos Monoclonais/uso terapêutico , Modelos Animais de Doenças , Etanercepte/uso terapêutico , Feminino , Efeito Enxerto vs Tumor/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante Homólogo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...